Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Cancer Prevention ; : 153-161, 2021.
Article in English | WPRIM | ID: wpr-899055

ABSTRACT

Air pollutants are in the spotlight because the human body can easily be exposed to them. Among air pollutants, the particulate matter (PM) represents one of the most serious toxicants that can enter the human body through various exposure routes. PMs have various adverse effects and classified as severe carcinogen by International Agency for Research on Cancer. Their physical and chemical characteristics are distinguished by their size. In this review, we summarized the published information on the physicochemical characteristics and adverse effects of PMs on the skin, including carcinogenicity. Through comparisons of biological networks constructed from relationships discussed in the previous scientific publications, we show it is possible to predict skin cancers and other disorders from particle-size-specific signaling alterations of PM-responsive genes. Our review not only helps to grasp the biological association between ambient PMs and skin diseases including cancer, but also provides new approaches to interpret chemical-gene-disease associations regarding the adverse effects of these heterogeneous particles.

2.
Journal of Cancer Prevention ; : 153-161, 2021.
Article in English | WPRIM | ID: wpr-891351

ABSTRACT

Air pollutants are in the spotlight because the human body can easily be exposed to them. Among air pollutants, the particulate matter (PM) represents one of the most serious toxicants that can enter the human body through various exposure routes. PMs have various adverse effects and classified as severe carcinogen by International Agency for Research on Cancer. Their physical and chemical characteristics are distinguished by their size. In this review, we summarized the published information on the physicochemical characteristics and adverse effects of PMs on the skin, including carcinogenicity. Through comparisons of biological networks constructed from relationships discussed in the previous scientific publications, we show it is possible to predict skin cancers and other disorders from particle-size-specific signaling alterations of PM-responsive genes. Our review not only helps to grasp the biological association between ambient PMs and skin diseases including cancer, but also provides new approaches to interpret chemical-gene-disease associations regarding the adverse effects of these heterogeneous particles.

SELECTION OF CITATIONS
SEARCH DETAIL